
AIAA JOURNAL

Vol. 41, No. 4, April 2003

Evolutionary Optimization of Computationally
Expensive Problems via Surrogate Modeling
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University of Southampton, Southampton, England SO17 1BJ, United Kingdom

We present a parallel evolutionary optimization algorithm that leverages surrogate models for solving compu-
tationally expensive design problems with general constraints, on a limited computational budget. The essential
backbone of our framework is an evolutionary algorithm coupled with a feasible sequential quadratic program-
ming solver in the spirit of Lamarckian learning. We employ a trust-region approach for interleaving use of exact
models for the objectiveand constraint functionswith computationallycheap surrogatemodels during local search.
In contrast to earlier work, we construct local surrogate models using radial basis functions motivated by the prin-
ciple of transductive inference. Further, the present approach retains the intrinsic parallelism of evolutionary
algorithms and can hence be readily implemented on grid computing infrastructures. Experimental results are
presented for some benchmark test functions and an aerodynamic wing design problem to demonstrate that our
algorithm converges to good designs on a limited computational budget.

Nomenclature
d = number of design variables
f .x/ = exact analysis function
Of .x/ = approximate analysis function

g.x/ = exact constraint function
Og.x/ = approximate constraint function
K = Gram matrix
k = trust-region iteration number
kmax = maximum trust-region iterations allowed
m = number of nearest design points employed
mmax = maximum number of nearest design points speci� ed
mmin = minimum number of nearest design points speci� ed
n = size of training dataset
Pq = polynomial of order q ¡ 1
p = number of inequality constraints
tc = current time spent
tt = computational time budget allocated
x = design variable vector
xl = lower bound of design variable vector
xu = upper bound of design variable vector
xk

c = initial guess at the kth trust-region iteration
xk

lo = local optimum at the kth trust-region iteration
y = exact function value
Oy = approximate function value
® = weight vector
1k = trust-region radius at iteration k
² = approximation error
µ = undetermined coef� cients of polynomial P
» = update factor for trust region radius
½k = approximation � gure of merit
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I. Introduction

H IGH computational costs associated with the use of high-
� delity simulation models pose a serious impediment to the

successful application of evolutionary algorithms (EAs) to engi-
neering design optimization. A motivating example for us is aero-
dynamic wing design, where one function evaluation involving the
solution of the Navier–Stokes equations can take many hours of
computer time. Such computationallyexpensiveproblemsalso arise
in other areassuchas structuraldesign,electromagnetics,and design
of coupled multidisciplinary systems. In such complex engineer-
ing design problems EAs typically require thousands of function
evaluations to locate a near-optimal solution. Hence, when com-
putationally expensive high-� delity simulation models are used for
predicting design improvements, the use of EAs can be computa-
tionally prohibitive.

In gradient search it is now standard practice for computation-
ally cheap surrogate models to be used in lieu of exact models to
reduce computationalcost.Because gradient-basedoptimizational-
gorithms make use of line searches to locate a new iterate, the issue
of range of validity of the approximation models or the control of
approximation errors can be directly addressed by using ad hoc
move limits or a trust-region framework. As shown by Alexandrov
et al.,1 the trust-region strategy for adaptively controlling the move
limits guaranteesglobal convergenceunder some mild assumptions
on the accuracy of the surrogate model. More general frameworks
for managing the use of approximation models in pattern search
algorithms have also been proposed in the literature, for example,
see Booker et al.2 and Sera� ni.3 A more detailed survey of the state
of the art can be found in Simpson et al.4

In contrast, because EAs make use of probabilistic recombina-
tion operatorscontrollingthe step size of design changes (to control
the accuracy of approximate � tness predictions) is not straightfor-
ward as in gradient-based optimization algorithms. This dif� culty
becomes particularly severe when local approximation models are
employed during search. In principle, global models can be em-
ployed to circumvent this problem. However, in practice, because
of the curse of dimensionality, such models become increasingly
dif� cult to construct for problems with large number of variables.

Robinson and Keane5 presented a case for employing variable-
� delity analysis models and approximation techniques to improve
theef� ciencyof evolutionaryoptimizationfor complexdesigntasks.
Computationalframeworksfor integratinga class of single-pointap-
proximation models with EAs were proposed by Nair and Keane.6

However, such frameworks are restricted to a special class of ap-
proximation models that are domain speci� c. For more general ap-
proximationmodels Ratle7 examined a strategy for integratingevo-
lutionary search with Kriging models. This problem was revisited
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by El-Beltagy et al.,8 where it is argued that the issue of balanc-
ing the concerns of optimizationwith that of design of experiments
must be addressed. Numerical studies were presented for certain
pathological cases to show that the idea of constructing an accu-
rate global surrogatemodel might be fundamentally� awed because
of the curse of dimensionality. Liang et al.9 proposed a strategy
for coupling EAs with local search and quadratic response surface
methods. However, when working with multimodal problems the
accuracy of quadratic models can become questionable. Jin et al.10

presenteda framework for coupling EAs and neural-network-based
surrogate models. This approach uses both the expensive and ap-
proximatemodels throughoutthe search,with an empiricalcriterion
to decide the frequency at which each model should be used.

In spite of extensive work on this topic, existing strategies for
integrating approximation models with EAs have met with limited
success in applications to real-world problems. Some of the key
factors responsible for this are as follows:

1) The � rst factor is the curseof dimensionalitythat causessignif-
icant dif� culties in constructing a global surrogate model which is
capable of accurately predicting � tness improvements during the
search. This fundamental dif� culty arises from the fact that the
number of hypercubes required to � ll out a compact region of a
d-dimensional space grows exponentiallywith d .

2) The inability of most frameworks to handle problems with
general nonlinear inequality and equality constraints is the second
factor.

3) Most of the proposed strategies for managing the interplay
between the exact and approximate models tend to compromise on
the intrinsic parallelism of traditional EAs.

The objectiveof thepresentpaper is to developa generalapproach
for integratingsurrogatemodels with EAs, which addresses the lim-
itations of existing strategies just outlined. The proposed algorithm
leverages well-established notions in the literature on hybrid evo-
lutionary optimization techniques, radial basis functions, and trust-
region frameworks. The essential backbone of our approach is an
EA hybridized with a feasible sequential quadratic programming
(SQP) solver. The rationalebehind using a feasibleSQP solver is to
exploit itswell-knownability to ef� ciently locate the localoptimaof
optimization problems with general constraints.11 Each individual
in an EA generation is used as an initial guess for local search in
the spirit of Lamarckian learning. We employ a trust-region frame-
work to manage the interplay between the original objective and
constraint functions and computationally cheap surrogate models
during local search.

We propose the idea of employing local surrogate models that
are constructed using data points that lie in the vicinity of an initial
guess. This local learning technique is an instance of the transduc-
tive inferenceparadigm,which has recentlybeen the focus of recent
research in statistical learning theory.12;13 Traditionally, surrogate
models are constructed using inductive inference, which involves
using a training dataset to estimate a functional dependency and
then using the computed model to predict the outputs at the points
of interest. However, when constructing surrogate models for opti-
mization we are speci� cally interested in ensuring that the models
predict the objectiveand constraint functionvalues accuratelyat the
sequenceof iteratesgeneratedduring the search;how well themodel
performs at other points in the parameter space is of no concern in
this speci� c context. Transductive inference offers an elegant solu-
tion to this problem by directly estimating the outputs at the point
of interest in one step; the reader is referred to Vapnik’s text12 (see
Chapter 8) for a detailed theoretical analysis of its superior gener-
alization capabilities over standard inductive inference.

In the present work we implement transduction by constructing
radial basis networks using data points in the local neighborhood
of an optimization iterate. In other words, instead of constructing a
global surrogate model a local model is created on the � y whenever
the objective and constraint functions must be estimated at a design
point during local search. This idea of constructing local models is
similar in spirit to the multipointapproximationtechniqueproposed
by Toropov et al.14 and the moving least-squares approximation
technique.15 It is shown that localized training data can be readily
selected from a search engine databasecontainingprevious iterates,

which is continuouslyupdatedas the search progresses.Further, the
proposedalgorithmcanbe ef� cientlyparallelizedongrid computing
architectures because it does not compromise on the intrinsic par-
allelism offered by EAs. Extensive numerical studies are presented
for some benchmarktest functionsand an aerodynamicwing design
problem. We show that the present framework allows for the pos-
sibility of converging to good designs on a limited computational
budget.

This paper is organized as follows: Section II outlines surrogate
model constructionusing radial basis functions.Section III presents
the proposed algorithm for integrating local surrogate models and
trust-regionmethods with EAs. The grid infrastructureemployed to
achieve parallelismis also brie� y discussed. In Sec. IV, we summa-
rize experimental studies on some benchmark test functions and an
aerodynamicwing design problem. Section V summarizes the main
conclusions.

II. Surrogate Modeling
Surrogate models or metamodels are (statistical) models that are

built to approximate computationally expensive simulation codes.
Surrogate models are orders of magnitude cheaper to run and can
be used in lieu of exact analysis during evolutionary search. Fur-
ther, the surrogate model can also yield insights into the functional
relationshipbetween the input x and the output y. If the true nature
of a computer analysis code is represented as

y D f .x/ (1)

then a surrogate model is an approximation of the form

Oy D Of .x/ (2)

such that y D Oy C ² .
There exist a variety of techniques for constructing surrogate

models, for example, see the texts by Vapnik12 and Bishop16 for an
excellentexpositionof this area.One popularapproachin the design
optimization literature is least-squares regression using low-order
polynomials, also known as response surface methods. A statisti-
cally sound alternative for constructing surrogate models of deter-
ministic computer models is Kriging, which is referred to as de-
sign and analysis of computer experiments models in the statistics
literature17 and Gaussian process regression in the neural-network
literature.18 A comparison of some surrogate modeling techniques
has been presented by Giunta and Watson19 and Jin et al.20

As mentioned earlier, in the present study the use of local sur-
rogate models in the spirit of transductive inference is proposed.
In particular, a surrogate model is built on the � y when the ob-
jective and constraint functions at an optimization iterate are to be
estimated. This local model is built using only a small set of data
points that lie in the local neighborhood of the design point of in-
terest. Because surrogate models will probably be built thousands
of times during the search in this fashion, computational ef� ciency
is a major concern. This consideration motivates the use of radial
basis functionnetworks,which can be ef� ciently applied to approx-
imate multiple-input multiple-output data, particularly when a few
hundred data points are used for training.

Let fxi ; yi ; i D 1; 2; : : : ; ng denote the training dataset, where
x 2 Rd is the input vector and y 2 R is the output. Because we are
interested in cases where the training data are generated by run-
ning deterministic computer models, we will focus on interpolating
radial basis function models of the form

Oy D
nX

i D 1

®i K .kx ¡ xi k/ (3)

where K .kx ¡ xi k/: Rd ! R is a radial basis kernel and
® D f®1; ®2; : : : ; ®ng 2 Rn denotes the vector of weights.

Typicalchoicesfor the kernelincludelinearsplines,cubicsplines,
multiquadrics, thin-plate splines, and Gaussian functions.16 The
structure of some commonly used radial basis kernels and their
parameterizationare shown in Table 1. Given a suitable kernel, the
weight vector can be computed by solving the linear algebraic sys-
tem of equations K® D y, where y D fy1; y2; : : : ; yng 2 Rn denotes
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Table 1 Radial basis kernels

Kernel Parameterization

Linear splines kx ¡ ci k
Thin-plate splines kx ¡ ci kk kx ¡ ci kk

Cubic splines kx ¡ ci k3

Gaussian exp[¡.kx ¡ ci k2/=¯i ]

Multiquadrics
p

1 C .kx ¡ ci k2/=¯i

Inverse multiquadrics [1 C .kx ¡ ci k2/=¯i ]¡1=2

the vector of outputs and K 2 Rn £ n denotes the Gram matrix formed
using the training inputs (i.e., the i j th element of K is computed as
K .kxi ¡ x j k/).

Micchelli21 proved that nonsingularityof the Gram matrix K can
be theoretically guaranteed for a class of kernels only when the set
of input vectors in the training dataset is distinct. In many papers
in the radial basis function literature, a polynomial term P is often
appended to Eq. (3) along with some constraints. In other words,
if K is a conditionally positive de� nite function of order q then to
ensure a unique solution for the weight vector Eq. (3) is rewritten as

Oy D
nX

i D 1

®i K .x; xi / C Pq .x/ (4)

where Pq is a polynomial of order q ¡ 1 and the following homo-
geneous constraint equations are imposed:

nX

i D 1

®i Pk .xi / D 0; 1 · k · q (5)

Then theweightvectorcanbecomputedby solvinga linearalgebraic
system of equations of the form Ax D b, where

A D
µ

K P

PT 0

¶
; x D f®; µgT ; b D fy; 0gT (6)

where P is a matrix that arises by substituting the input vectors in
the training dataset into the polynomial term P . In practice, good
approximations can be obtained by using a constant instead of a
full-order polynomial. Here, the coef� cient matrix A becomes

A D
µ

K 1

1T 0

¶
2 R.n C 1/ £ .n C 1/ (7)

where 1 2 Rn is a vector of ones.
For problems with multiple outputs, the weight vector can be ef-

� ciently computed for all of the outputs of interest once the matrix
K is decomposed. For a typical dataset with 500 training points,
20 inputs, and � ve outputs, surrogate model constructionusing lin-
ear splines takes a fraction of a second on one processor of an SGI
Power Challenge. When dealing with computationally expensive
problems that cost more than a few minutes of cpu time per func-
tion evaluation, this training cost is negligible.

In the present study we use linear splines to construct surrogate
models because experimental studies in the literature20 suggest that
this kernel is capable of providingmodels with good generalization
capability at a low computational cost. We present next an algo-
rithm that integrates a local version of such surrogates in hybrid
evolutionary search.

III. Present Framework
In this sectionwe presentthe essential ingredientsof the proposed

local surrogate modeling algorithm for parallel evolutionary opti-
mization of computationally expensive problems. In particular, we
considera generalnonlinearprogrammingproblemof the following
form.

Minimize:

f .x/

Subject to:

gi .x/ · 0; i D 1; 2; : : : ; p

xl · x · xu (8)

where x 2 Rd is the vector of design variables.

In this paper we are interested in cases where the evaluation of
f .x/ and g.x/ is computationallyexpensive,and it desired to obtain
a near-optimalsolutionona limited computationalbudget.The basic
steps of the proposed algorithm are outlined here:

BEGIN
Initialize: Generate a database containing a population of
designs. (Optional: upload a historical database if one exists)
While (computational budget not exhausted)

Evaluate all individuals in the population using the exact
models.
For each nonduplicated individual in the population

1) Apply trust-region enabled feasible SQP solver to each
individual in the population by interleaving the exact and
local surrogate models for the objective and constraint
functions.
2) Update the database with any new design points
generated during the trust-region iterations and their exact
objective and constraint function values.
3) Replace the individuals in the population with
the locally improved solution in the spirit of Lamarckian
learning.

End For
Apply standard EA operators to create a new population.

End While
END

In the � rst step we initialize a database using a population of de-
signs, either randomly or using design of experiments techniques
such as Latin hypercube sampling. All of the design points thus
generated and the associated exact values of the objective and con-
straint functions are archived in the database that will be used later
for constructinglocal surrogatemodels.Alternatively,onecoulduse
a databasecontainingthe resultsof a previoussearchon the problem
or a combination of the two.

Subsequently, with ample design points in the database a hy-
brid EA is employed, where for each nonduplicated design point
or chromosome in the population a local search is conducted using
surrogates. The local strategy used here embeds the feasible SQP
optimizer within a trust-region framework.22 However, instead of
adopting an augmented Lagrangian approach we handle the objec-
tive and constraintfunctionsseparatelyusingthe approachof Giunta
and Eldred.23 More speci� cally, during local search for each chro-
mosome in an EA generation we solve a sequence of trust-region
subproblemsof the following form.

Minimize:

Of k
¡
x C xk

c

¢

Subject to:

Ogk
i

¡
x C xk

c

¢
· 0; i D 1; 2; : : : ; p

kxk · 1k (9)

where k D 0; 1; 2; : : : ; kmax. In practice, the L1 norm can be em-
ployed to impose the second constraint in Eq. (9). Hence, this con-
straint can be transformed into appropriate bounds on the design
variables, which is updated at each trust-region iteration based on
the value of 1k .

For each subproblem(or duringeach trust-regioniteration)surro-
gate models of the objectiveand constraint functions,namely Of k .x/
and Ogk

i .x/, are created dynamically.The m nearest neighbors of the
initial guess xk

c are � rst extracted from the archived database of
design points evaluated so far using the exact analysis code. The
criterion used to determine the similarity between design points is
the simple Euclidean distance metric. These points are then used
to construct local surrogate models of the objective and constraint
functions.Care has to be taken to ensure that repetitionsdo notoccur
in the training dataset because this might lead to a singular Gram
matrix K.

The surrogate models thus created are used to facilitate the nec-
essary objective and constraint function estimations in the local
searches. During local search, we initialize the trust region 1 us-
ing the minimum and maximum values of the design points used to
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construct the surrogate model. We found this initialization strategy
worked well for the problems considered in this paper. After each
iteration the trust region radius 1k is updated based on a measure
that indicates the accuracy of the surrogate model at the kth local
optimum xk

lo. After computing the exact values of the objective and
constraint functionsat this point, the � gure of merit ½k is calculated
as

½k D min
¡
½k

f ; ½k
gi

¢
for i D 1; 2; : : : ; p (10)

where

½k
f D

f
¡
xk

c

¢
¡ f

¡
xk

lo

¢

Of
¡
xk

c

¢
¡ Of

¡
xk

lo

¢ ; ½k
gi

D
gi

¡
xk

c

¢
¡ gi

¡
xk

lo

¢

Ogi

¡
xk

c

¢
¡ Ogi

¡
xk

lo

¢ (11)

The precedingequationsprovidea measureof theactualvs predicted
change in the objectiveand constraintfunctionvaluesat the kth local
optimum. The value of ½k is then used to update the trust region
radius as follows1:

1k C 1 D 0:251k if ½k · 0:25

D 1k if 0:25 < ½k · 0:75

D »1k if ½k ¸ 0:75 (12)

where » D 2 if kxk
lo ¡ xk

ck1 D 1k , or » D 1 if kxk
lo ¡ xk

ck1 < 1k .
The trust region radius 1k is reduced if the accuracy of the surro-

gate, measured by ½k , is low. 1k is doubled if the surrogate is found
to be accurate and the kth local optimum xk

lo lies on the trust-region
bounds; otherwise, the trust-region radius remains unchanged.

The exact values of the objective and constraint functions at the
optimal solution of the kth subproblem are combined with the m
nearestneighboringdesignpoints to generatea new surrogatemodel
for the next iteration. In addition, the initial guess for the (k C 1)th
iteration within each local search is determined by

xk C 1
c D xk

lo if ½k > 0

D xk
c if ½k · 0 (13)

The trust-region iterations (for each chromosome) are terminated
when k ¸ kmax. At the end of kmax trust-region iterations for a chro-
mosome, the exact � tness of the locally optimized design point is
determined. If it is found to be better than that of the initial guess,
then Lamarckian learningproceeds.Lamarckian learning forces the
genotype to re� ect the result of improvement by placing the locally
improved individual back into the population to compete for repro-
ductiveopportunities.In addition,the locallyoptimizeddesignpoint
and its corresponding objective and constraint function values are
added to the database. This process of hybrid EA search is contin-
ued until the computational budget is exhausted or a user-speci�ed
termination criterion is met.

Apart from the parameters used in standard EAs, our algorithm
has two additionaluser-speci�ed parameters:kmax and m. In Sec. IV
we present experimental studies to investigate the effect of these
parameters on the convergence trends.

A. Some Remarks on Global Convergence
Global convergenceis de� ned in the optimizationliteratureas the

mathematical assurance that the iterates produced by an algorithm,
started from an arbitrary initial guess, will converge to a stationary
point or local optima of the originalhigh-� delity expensiveanalysis
code.An approachbased on the classical trust region idea from non-
linear programming is shown by Alexandrov et al.1 to be probably
convergent to a local optima of the original problem.

Global convergence results for EAs that make use of approxi-
mation models in the search have not appeared in the literature.
Nevertheless, it is possible to design EAs that inherit the global
convergenceproperties of existing algorithms. The work by Hart24

has shown one such possibility where a provably convergent evo-
lutionary pattern search algorithm was proposed that inherits the
existing theory for traditional pattern search.

To proveglobalconvergencefor trust-regionframeworksthat em-
bed surrogatemodels in the local search, Alexandrovet al.1 showed
that zero-order and � rst-order consistency conditions have to be
imposed at the initial guess, that is,

Of
¡
xk

c

¢
D f

¡
xk

c

¢
(14)

r Of
¡
xk

c

¢
D r f

¡
xk

c

¢
(15)

Because we use an interpolating surrogate model in the present ap-
proach, only the zero-order consistency condition is satis� ed at the
initial guess. To satisfy Eq. (15), the exact sensitivities of the ob-
jective and constraint functions are required, which would be com-
putationally prohibitive for many problems. Convergence analysis
of trust-region algorithms when only inexact gradient information
is available has been considered by Carter25 and Toint.26 Lever-
aging these results, Arian et al.27 presented a theoretical analysis
for unconstrainedoptimization using surrogates to show that under
mild assumptions convergence can still be guaranteed. In partic-
ular, the condition the surrogate model needs to satisfy is that the
predicteddirectionof descentapproximatesthe “true”directionsuf-
� ciently well in the limit. This result can be readily extended to non-
linear programming problems with general constraintsby adopting
an augmentedLagrangian formulation on the lines of that presented
by Rodriguez et al.22 In summary, global convergence can be guar-
anteedonly when some assumptionsare made regarding the descent
direction computed using the surrogate model.

The observations made here are of theoretical interest alone
because 1) we only carry out a few trust-region iterations during
local search for each chromosome and 2) we do not have a theo-
retical upper bound on the degree to which the descent direction
computed using the surrogate model approximates the actual direc-
tion of descent.

B. Parallel Implementation
In engineering design optimization evaluation of the objective

and constraint functions takes up the overwhelming bulk of the
computation. Therefore, a sublinear improvement in design search
ef� ciency can be achieved via global parallelism, where all de-
sign points within a single populationare evaluated simultaneously
across multiple machines. Parallelism is thus considereda desirable
feature of any framework for optimization of computationally ex-
pensiveproblems.In thepresentalgorithmit is relativelystraightfor-
ward to achieveparallelismbecause local search for each individual
in an EA generationcan be conductedindependently.To ensure load
balancing, we only need to specify that the number of trust-region
iterations be kept the same for each individual.

In the present implementation of our algorithm, we employed
NetSolve,28 a computationalplatformthat facilitatesgrid-basedhet-
erogenous computing29 in a transparent and ef� cient manner. Par-
allelism is achieved by wrapping the local search and surrogate
modeling routineson a NetSolve server. The analysis codes are also
wrapped on NetSolve servers, which can be invoked by the local
search and the client routines. Hence, using the farming client ap-
plication programming interface local search for each chromosome
in an EA generation can be readily conducted in parallel on remote
servers. Even though we used a centralized database, NetSolve has
capabilities for distributed data storage on remote servers. This ap-
proach does not parallelize the SQP steps and thus is only suitable
where the SQP updates can be offered as serial processes.

IV. Numerical Studies
In this section we present numerical results obtained by imple-

menting the proposed approach within a standard binary coded ge-
netic algorithm (GA). We employed a population size of 50 and
uniform crossover and mutation operators at probabilities 0.6 and
0.01, respectively.A linear ranking algorithm is used for selection.
The codes implementingthe objectiveand constraintfunctionswere
wrapped on NetSolve servers runningRed Hat Linux on Pentium III
processors.The GA code is linked to the NetSolve client library so
that the objective function and constraint evaluation modules, and
the local search routines can be invoked remotely.
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The feasible SQP implementation that is used here is the FFSQP
code developed by Lawrence and Tits.11 When started from an in-
feasiblepoint (one that violates at least one of the linear or nonlinear
constraints),FFSQP � rst does anoptimizationin which it minimizes
the maximum of the constraint violations. Subsequently, FFSQP
minimizes the objective function, while maintaining feasibility of
the iterates.

A. Results for Benchmark Test Functions
Two benchmarkproblemscommonlyused in the globaloptimiza-

tion literature are adopted here for testing the proposed algorithm.
They representclassesof unconstrainedandconstrainedmultimodal
test problems. These problems make it possible to study whether
the proposed approach would bring any increase in ef� ciency or
computationalcost reductionwhen used on complex problems.The
� rst example considered is minimization of the Rastrigin function
de� ned here.30

Minimize:

10d C
dX

i D 1

£
x2

i ¡ 10 cos.2¼xi /
¤

Subject to:

¡5:12 · xi · 5:12; i D 1; 2; : : : ; d (16)

The second problem considered is maximization of the bump test
function,which is very hard for most search methods to handle.31 It
is quite smooth but contains many peaks, all of similar heights. Its
main purpose is to test how methods cope with optima that occur
hard up against the constraint boundaries commonly found in en-
gineering design. These propertiesmake it suitable for the study of
GA performance as well as optimizing control parameters of evo-
lutionary optimizationmethods. The function is de� ned as follows.

Maximize:

abs

"
dX

i D 1

cos4.xi / ¡ 2
dY

i D 1

cos2.xi /

#,vuut
dX

i D 1

i x2
i

Subject to:

dY

i D 1

xi > 0:75;

dX

i D 1

xi <
15d

2

0 · xi · 10; i D 1; 2; : : : ; d (17)

The objective function in the preceding problem gives a highly
bumpy surface where the true global optimum is usually de� ned
by the product constraint. Figure 1 shows both the Rastrigin and
the bump objective function for d D 2. A 20-dimensional (d D 20)
version of the test functions is used here for numerical studies. For
the � rst problem involving minimization of the Rastrigin function,
there is a unique global optima at which the function value is zero.
For the bump test function, even though the global optima is not

Fig. 1a Surface plot for d = 2 of Rastrigin function.

Fig. 1b Surface plot for d = 2 of bump function.

precisely known for d D 20, a value of 0.81 can be obtained after
around 100,000 function evaluations using a GA.

The averaged convergence trends obtained by applying the
present algorithm to the benchmark test problems as a function
of the total number of function evaluations are shown in Figs. 2–
4. The results presented here were averaged over 20 runs for each
test function. Also shown in the � gures are averaged convergence
trends obtained using a standard GA and a global surrogate model-
ing strategy. The algorithm based on global surrogate models em-
ployed in our numerical studies is based on the approach proposed
by Ratle7; see the following for an outline of the steps involved in
this algorithm:

BEGIN
Initialize: Generate a database containing a population
of designs.
(Optional: upload a historical database if one exists)
Construct surrogate model using all available design points
in the database.
Set � tness function :D Surrogate model
While (computational budget not exhausted)

Evaluate all individuals in the population using the � tness
function.
Apply standard EA operators to create a new population.
If (� tness function :D Exact model)

Update database with any new designs generated using
the exact model.
Update surrogate model using all designs in the database.

End If
If (convergenceover surrogate model)

� tness function :D Exact model
Else

� tness function :D Surrogate model
End If

End While
END
The results obtained for the test functions show that the global

surrogate framework displays early sign of stalling. This is consis-
tent with previous studies in the literature,7;8;10 which suggest that
when global surrogate models are applied to high-dimensionaland
multimodal test functionsthe searchgenerallytendsto stall earlyon.
Such an effect is a result of the curse of dimensionality,which often
leads to early convergence at false global optima of the surrogate
model. In contrast, the results obtained using the proposed algo-
rithm clearly demonstrate that solutions close to the global optima
can be obtained on a limited computational budget. As surrogates
are used only for localsearches,that is, as the exactmodel is used for
all analysis conducted at the EA level, the chances for convergence
to false global optima are greatly reduced. In addition, the use of
the trust-regionframework maintains convergenceclose to the local
optima of the original problem during the SQP steps.

For these benchmark problems we also studied the effect of in-
creasing the maximum number of trust-region iterations and the
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Fig. 2 Averaged convergence trends for m = 100 and various values of kmax (3, 5, and 8) compared with standard GA and global surrogate modeling
framework for the 20-dimensionalRastrigin function.

Fig. 3 Averaged convergence trends for kmax = 3 and various values of m (100, 150, and 200) compared with standard GA for the 20-dimensional
Rastrigin function.
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Fig. 4 Averaged convergence trends for kmax = 3 and various values of m (100, 150, and 200) compared with standard GA for the 20-dimensional
bump function.

Fig. 5 Aircraft wing planform geometry.

number of nearest neighbors (employed to construct the local sur-
rogatemodel) on the convergencebehavior(Figs. 2–4). A numberof
observationscan be made from the convergence trends. First, it ap-
pears that there is not much to be gained by increasing kmax beyond
three. Second, it appears that smaller values of m generally lead to
faster convergence during the early stages of search, but there is a
tendency to stall at later stages. The converse is true for increases
in m. This suggests the possibility of adaptively selecting m during
the search. We propose the following simple strategy:

m D .mmin C mmax/.tc=tt / (18)

where mmin D population size and mmax , which limits the design
point size used for local surrogate modeling, is set to 400 here.

B. Aerodynamic Wing Design
In this section we present the application of the proposed algo-

rithm to the transonic civil transport aircraft wing design problem
considered in Keane and Petruzzelli.32 Aerodynamicwing design is
an extremely complex task, which is normally undertaken over an
extended time period and at different levels of complexity. The pa-
rameters used to describe the wing design problem consideredhere
consist of the freestream velocity and coef� cient of lift of the wing

Table 2 Optimization conditions for wing design
parameters, constraints, and respective limits

Lower limit Upper limit Quantity (unit)

11 wing design variable de�nitions
100 250 Wing area (m2), S
6 12 Aspect ratio, W 2

s =S
0.2 0.45 Kink position, 2Wk =Ws
25 45 Sweep angle (deg), ®
0.4 0.7 Inboard taper ratio, Ck =Cr
0.2 0.6 Outboard taper ratio, Ct =Cr
0.1 0.18 Root thickness/chord, Tr =Cr
0.06 0.14 Kink thickness/chord, Tk =Ck
0.06 0.14 Tip thickness/chord, Tt =Ct
4.0 5.0 Tip wash (deg)
0.65 0.85 Kink washout fraction

4 design constraints
2.5 —— Undercarriage bay length
—— 135,000 Wing weight (N)
40.0 —— Wing volume (m3)
—— 5.4 Pitch-up margin

together with a small number of overall wing geometry variables.
The geometry is characterizedby the planformshapeof the wing to-
gether with several span-wise functions such as twist and thickness
to chord ratio. The planform geometry and design variable de� ni-
tions are shown in Fig. 5 and Table 2, respectively. To prevent the
optimizer from driving the designs to unworkable extremes, several
constraints are placed on the wings designed. These are the under-
carriage bay length (which must be accommodated within the root
to kink section of the wing), the fuel tank volume (which must be
accommodated between the main spars within the wing), the wing
weight, and the pitch-up margin. These four nonlinear inequality
constraints are also listed in Table 2.

In the present study we considered the optimization of a civil
transport aircraft wing for operation at Mach 0.785 and a Reynolds
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Fig. 6 Summary of minimum drag values (in counts) using the VSAERO code and surrogate models. Results are average of three runs.

Table 3 Summary of minimum drag values (in counts)
using the TADPOLE code and surrogate models

Mean wing drag values (D=q , m2)
at evaluation counts of

Approach 250 500 600 800 1200 1500

m D 100 2.823 2.781 2.788 2.788 2.788 2.788
m D 200 3.218 2.788 2.775 2.771 2.768 2.768
m D 300 3.235 3.049 3.049 2.771 2.764 2.761
m D 400 3.265 3.064 3.049 3.020 2.772 2.758
Adaptive m 2.919 2.771 2.771 2.768 2.760 2.758
Standard GA 3.213 3.004 2.983 2.978 2.974 2.961

numberof 7:3 £ 106. The objectiveis minimizationofwing D=q m2

as calculatedby using an empirical drag estimation tool TADPOLE
and the linearized potential code VSAERO, with target lift, wing
weight, volume, pitch-up margin, and root triangle layout chosen
to be representative of a 220-seat wide-body airliner. Both codes
return the total drag coef� cient de� ned by the wave drag as a result
of the presence of shocks, viscous wake, or pro� le drag caused by
the boundary layer and vortex or induced drag caused by the tip
vortex of the three-dimensionalwing. A common approach to drag
recovery is also implemented in the two codes. TADPOLE takes
only some 6 s to run and returns drag values based on curve � ts
to previously analyzed wings making assumptions about the kinds
of roof-top pressure pro� les now commonly achieved in transonic
wing design. VSAERO is a linearized potential code with coupled
viscous boundary layer and, as employed here, with added correc-
tion for compressibility.33 It is computationallymore expensivethan
TADPOLE and requires approximately11 min of compute time per
drag evaluation. However, it has the advantage of providing more
accurate drag predictionsprovided Mach numbers are not too high.

A summary of the search results obtained for the aerodynamic
wing design problem is shown in Table 3 and Figs. 6 and 7. Table 3

shows the search results when using TADPOLE for drag estima-
tion. Once again, it is observed from these results that smaller val-
ues of m lead to faster convergenceof the wing drag values during
the early stages of search, but result in stalling at later stages, and
the converse is true for increases in m. These results are in line
with those observed earlier for the test functions. Hence, for the
computationally expensive VSAERO code m is chosen adaptively
using Eq. (18). We also set the maximum number of trust region
iterations (kmax) to three. During local search, we constructed sur-
rogate models for the objective function and the four inequality
constraints.

For this problem it has been observed from previous studies32

using the TADPOLE code that a design with a drag value of
2.758 counts can be obtained after 10,000 evaluations. In com-
parison, using the proposed approach we are able to converge to
this solution on an average after 1500 exact evaluations,when m is
chosen adaptively during the search.

In Fig. 6, the averaged convergence trends using VSAERO for
wing drag estimation also clearly illustrate the ability of the pro-
posedalgorithmto arriveat gooddesignson a limited computational
budget. The convergencetrends of the best run for the aerodynamic
wing design problem using VSAERO are also plotted as a function
of wall time in Fig. 7. Because of the availability of only eight li-
censes for the VSAERO code, the timing plot obtained in Fig. 7 is
based on a total of eight processors being used for parallel com-
putations. Previous studies using the VSAERO code for wing drag
estimation have revealed that the best design that can be obtained
using the standard GA with only the exact analysis model has a
drag value of 2.63 after 1800 evaluations. In comparison, using the
present approachwe were able to obtain this solutionon averageaf-
ter 250 exactevaluations.After 733exact evaluationsthe best design
obtained using our algorithm had a drag value of 2.404, which is
the lowest value obtained to date for this problem using various op-
timization algorithms.The optimal solutions reported here satis� ed
all four of the inequality constraints.
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Fig. 7 Comparison of best convergence trends as a function of wall time for the aerodynamic wing design problem using the VSAERO code and
surrogate models.

V. Conclusions
In this paper we present a hybrid algorithm that leverages sur-

rogate models for evolutionary optimization of computationally
expensive constrained design problems. It is argued that for such
complex design problems constructingan accurateglobal surrogate
model is fraught with fundamental dif� culties because of the curse
of dimensionality. A local learning approach in the spirit of trans-
ductive inference is employed to construct surrogate models. We
show that such local approximation models can be readily incor-
porated into hybrid evolutionary-gradientoptimization algorithms.
Because our local search strategyemploysa trust-regionframework
to interleave the exact and approximatemodels, convergenceto the
optima of the original expensive problem can be guaranteed under
some mild assumptions. Further, it is shown that the present ap-
proach retains the intrinsic parallelism of traditional evolutionary
algorithms.

We presented extensive numerical studies on some benchmark
test functions to demonstrate the competitiveness of the proposed
algorithm. The results were compared with those obtained using a
standardgeneticalgorithmand a globalsurrogatemodelingstrategy.
Experimental results are also presented for an aerodynamic wing
design problem. These studies indicate that the present approach
allows for the possibility of arriving at near-optimal solutions on a
limited computational budget.
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