Measuring Complementarity between Function Landscapes in Evolutionary Multitasking

A. Gupta¹, Y. S. Ong¹,², B. Da², L. Feng³, and S. D. Handoko⁴

¹Rolls-Royce@NTU Corporate Lab c/o, School of Computer Engineering
Nanyang Technological University, Singapore
Email: {abhishkeg, asysong}@ntu.edu.sg
²Computational Intelligence Lab, Nanyang Technological University, Singapore
Email: DA0002UI@e.ntu.edu.sg
³College of Computer Science, Chongqing University, China
Email: liangf@cqu.edu.cn
⁴School of Information Systems, Singapore Management University, Singapore
Email: dhandoko@smu.edu.sg

Abstract — Over the years, the algorithms of evolutionary computation have emerged as popular tools for tackling complex real-world optimization problems. However, a common feature among these algorithms is that they focus on efficiently solving only a single problem at a time. Despite the availability of a population of individuals navigating the search space, and the implicit parallelism of their collective behavior, seldom has an effort been made to multitask. Considering the power of implicit parallelism, we are drawn to the idea that population-based search strategies provide an idyllic setting for leveraging the underlying synergies between objective function landscapes of seemingly distinct optimization tasks, particularly when they are solved together in a unified space with a single population of evolving individuals. Allowing the principles of evolution to autonomously exploit the available synergies can often lead to accelerated convergence for otherwise complex tasks. With the aim of providing deeper insight into the processes of evolutionary multitasking, we present in this paper a conceptualization of that captures the correlation among these algorithms is that they focus on efficiently solving only a single problem at a time. Despite the availability of a population of individuals navigating the search space, and the implicit parallelism of their collective behavior, seldom has an effort been made to multitask. Considering the power of implicit parallelism, we are drawn to the idea that population-based search strategies provide an idyllic setting for leveraging the underlying synergies between objective function landscapes of seemingly distinct optimization tasks, particularly when they are solved together in a unified space with a single population of evolving individuals. Allowing the principles of evolution to autonomously exploit the available synergies can often lead to accelerated convergence for otherwise complex tasks. With the aim of providing deeper insight into the processes of evolutionary multitasking, we present in this paper a conceptualization of what, in our opinion, is one possible interpretation of the complementarity between optimization tasks. In particular, we propose a functional synergy metric that captures the correlation between objective function landscapes of distinct tasks placed in synthetic multitasking environments. In the long run, it is contended that the metric will serve as an important guide toward better understanding of evolutionary multitasking, thereby facilitating the design of improved multitasking engines.

Index Terms — Evolutionary Optimization, Evolutionary Multitasking, Functional Synergy Metric, Memetic Computation.

I. INTRODUCTION

Evolutionary algorithms (EAs) are bio-inspired stochastic optimization techniques [1], [2] which are characterized by a population of virtual agents or individuals. Their remarkable feature is that from a collection of simple rules mimicking Darwinian evolution emerges an implicitly parallel search engine capable of dealing with a variety of complex optimization problems. Although significant research has been carried out over several years towards the advancement of EAs, we find that the majority of these works are limited to the case of handling a single optimization problem (usually belonging to a specific domain) at a time. Despite the known power of implicit parallelism [3], seldom has an effort been made toward exploring the implications of evolutionary multitasking, i.e., to solve multiple optimization problems concurrently using a single population of evolving individuals [4]. It is contended that the potential for multitasking is in fact a feature exclusive to population-based search algorithms, one that undeniably sets them apart from their classical mathematical counterparts. Moreover, the benefits of appropriately harnessing this potential can be numerous. From a theoretical point of view, it may be possible to leverage upon the underlying synergies between objective function landscapes of distinct optimization tasks in an implicit manner, thereby enabling accelerated convergence towards the global optimum of multiple tasks at once. In fact, in the long run, an ideal evolutionary multitasking engine is envisioned to be a complex adaptive system with its performance being at least comparable to that of standard serial evolutionary optimizers of the present day.

An interesting practical motivation for the evolutionary multitasking paradigm is drawn from the rapidly growing field of cloud computing. In general, most cloud-based services face the natural phenomenon wherein multiple jobs are received from multiple customers at the same time. For the purpose of this study, we conceive a cloud-based on-demand service providing customers with access to state-of-the-art optimization software. Thus, it is likely for a situation to arise wherein the service provider is faced with multiple distinct optimization tasks to be addressed at once. The tasks may either have similar properties or may even belong to entirely different domains. Nevertheless, we claim that it may so happen that there exist certain complementarities, albeit unknown to the service provider, which exist between some of these tasks. The source of the complementarity could, for instance, lie in the mutually supporting objective function landscapes of the respective tasks. Therefore, in such scenarios, it becomes possible to comprehend the utility of an optimization solver that is capable of autonomously leveraging on the available synergies, i.e., without the need for any external intervention. The potential improvement in the provided solutions, either in terms of speed and/or quality, with the end user as well as the service provider being the eventual beneficiaries, highlights the real-world significance of the suggested multitasking paradigm.

Until recently, the notion of evolutionary multitasking had largely eluded researchers in the field of evolutionary
computational computation (EC). In [5], the problem of simultaneously dealing with multiple optimization tasks was introduced under the label of multifactorial optimization (MFO), wherein each task contributes a unique factor influencing the evolution of a single population of individuals. In order to simulate the evolution of the population in a composite landscape, a multifactorial evolutionary algorithm (MFEA) was proposed as a computational analogue of the bio-cultural models of multifactorial inheritance [6]. These models essentially describe how complex developmental traits in offspring emerge from the interactions of various genetic and cultural factors. The central ingredient of the MFEA is that it makes use of a unified search space encompassing all tasks in a multitasking environment. As a result, the building blocks corresponding to different tasks are contained within a unified pool of genetic material. This feature is in fact the key element enabling the discovery and implicit transfer of useful genes from one task to another in an effective manner.

While the concept of multitasking has been popular in the field of machine learning for several years [7], to the best of our knowledge, little has been done to explore an equivalent concept in the context of pure optimization. Further, it is recognized that in many (albeit not all) practical applications of evolutionary multitasking, there is unlikely to exist much a priori task-specific knowledge to leverage upon. Nevertheless, it was demonstrated in [5] that the notion of implicit genetic transfer during evolution provides the scope for autonomously exploiting the underlying synergies between optimization tasks. Further, several real-world implications of the paradigm have recently been presented in [8]-[10]. For facilitating further advancements in evolutionary multitasking, it is considered vital to develop a sensible theoretical explanation of when and why implicit genetic transfer may lead to performance enhancements. In particular, it is important to devise a measure of the inter-task complementarity which gets harnessed during the process of multitasking. To this end, we propose a functional synergy metric (FSM) that captures and quantifies what, in our opinion, is a meaningful interpretation of the complementarity between any two optimization tasks in a multitasking environment. Since the magnitude of synergy is analyzed from the perspective of complementarity in the objective function landscapes, we consider synthetic problems where knowledge about the landscapes is available beforehand for the purpose of analyzing the proposed metric.

For a comprehensive exposition on the formulation of the FSM, this paper has been organized as follows. Section II contains an overview of the basic concepts of MFO and briefly highlights the distinction between the proposed multitasking paradigm and the field of multi-objective optimization. The MFEA is discussed in Section III, emphasizing the means of implicit genetic transfer in multitasking. Thereafter, the construction of the FSM is carried out in Section IV, and its implications are studied in Section V via computational experiments. Finally, a summary of the work is contained in Section VI.

II. AN OVERVIEW OF MULTIFACTORIAL OPTIMIZATION

Consider a situation wherein \(K \) distinct optimization tasks to be performed simultaneously. Without loss of generality, all tasks are assumed to be minimization problems. The \(j^{th} \) task, denoted \(T_j \), has a search space \(X_j \) and an objective function \(F_j : X_j \rightarrow \mathbb{R} \). In such setting, we define MFO as an evolutionary multitasking paradigm that builds on the implicit parallelism of population-based search with the aim of finding \(\{x_1, x_2, ..., x_{K-1}, x_K\} = \text{argmin} \ \{F_1(x), F_2(x), ..., F_{K-1}(x), F_K(x)\} \), where \(x_j \in X_j \). Here, each \(F_j \) is treated as an added factor influencing the evolution of a single population of individuals. Thus, the composite problem is also referred to as a \(K \)-factorial problem.

Since the design fundamentals of an EA are based on the Darwinian principle of natural selection, it is necessary to first quantify the “fitness” of an individual in a multitasking environment. Accordingly, we define a set of properties for every individual \(p_i \), where \(i \in \{1, 2, ..., P\} \), in a population \(P \). Keep in mind that since the MFEA is endowed with a unified search space \(Y \) encompassing \(X_1, X_2, ..., X_K \), every individual can be decoded into a task-specific solution representation with respect to each of the \(K \) tasks.

Definition 1 (Factorial Rank): The factorial rank \(r_j^i \) of \(p_i \) on task \(T_j \) is simply the index of \(p_i \) in the list of population members sorted in ascending order with respect to \(F_j \).

Definition 2 (Skill Factor): The skill factor \(\tau_j \) of \(p_i \) is the one task, amongst all other tasks in a \(K \)-factorial environment, with which the individual is associated. If \(p_i \) is evaluated for all tasks then \(\tau_j = \text{argmin} \{r_j^i\} \) where \(j \in \{1, 2, ..., K\} \).

Definition 3 (Scalar Fitness): The scalar fitness of \(p_i \) in a multitasking environment is given by \(\phi_i = 1/r_{\tau_j}^i \).

Once the fitness of every individual has been scalarized according to Definition 3, they can be compared in a straightforward manner. For e.g., individual \(p_1 \) is considered to dominate \(p_2 \) in multifactorial sense simply if \(\phi_1 > \phi_2 \). However, note that the scalar fitness assignment and comparison procedures are not absolute. Since the factorial rank of an individual depends on the performance of every other individual in the population, the comparison is in fact dependent on the population dependent. However, the procedure guarantees that if an individual \(p^* \) maps to the global optimum of any task, then, \(\phi_i \geq \phi^* \) for all \(i \in \{1, 2, ..., |P|\} \). Thus, the proposed technique is indeed compatible with the ensuing definition of multifactorial optimality.

Definition 4 (Multifactorial Optimality): An individual \(p^* \), with a list of objective values \(\{F_1^*, F_2^*, ..., F_K^*\} \), is considered optimum in multifactorial sense iff \(\exists j \in \{1, 2, ..., K\} \) such that \(F_j^* \leq F_j(x) \), for all feasible \(x \in X_j \).

A. Multifactorial vs. Multi-Objective Optimization

As multi-objective optimization and MFO are both involved with optimizing a set of objective functions, conceptual similarities may be seen to exist between them. However, we emphasize that a fundamental distinction exists between the two paradigms. While evolutionary multitasking aims to leverage the implicit parallelism of population-based search to exploit latent complementarities between distinct tasks, multi-objective optimization deals with efficiently resolving conflicts among competing objectives of the same task. An illustration summarizing the statement is shown in Fig. 1. It is shown therein that simultaneous existence of multiple heterogeneous search spaces occurs in the case of...
multitasking. On the other hand, for multi-objective optimization, there typically exists a single search space for a given task, with all objective functions depending on variables contained within that space. As a point of further interest (although not specifically studied in the present paper), note that a multitasking environment could in fact include a multi-objective optimization task as one among many other concurrent tasks. This highlights the greater generality of the proposed multitasking paradigm.

III. THE MULTIFACTORIAL EVOLUTIONARY ALGORITHM

In this section, we turn our focus towards discussing an effective EA for the purpose of multitasking. In [5], the multifactorial evolutionary algorithm (MFEA) was shown to be inspired by bio-cultural models of multifactorial inheritance [6]. The algorithm can in fact be classified under the umbrella of memetic computation [11] as it considers the transmission of biological as well as cultural building blocks (genes and memes) from parents to their offspring. In particular, cultural effects are incorporated via two aspects of multifactorial inheritance acting in concert, namely, (a) nonrandom or assortative mating [6]: which states that individuals prefer to mate (crossover) with those exhibiting similar characteristics or belonging to the same cultural background, and (b) vertical cultural transmission [10], [12]: which states that the phenotype of an offspring gets directly affected by the phenotype of its parents.

The basic structure of the MFEA is presented in Algorithm 1. While the majority of the algorithm resembles a standard EA, there are some distinctive features that follow principles of multifactorial inheritance for effective evolutionary multitasking. For details, the reader is referred to [5]. The same has not been reproduced in this paper for the sake of brevity. An additional feature of the algorithm that is believed to be an important ingredient driving performance is that every offspring undergoes a local learning step with respect to its skill factor. In this study, a gradient-based local learning procedure is considered, thereby confining our subsequent discussions to the realm of continuous optimization.

Algorithm 1: Pseudocode of the MFEA

1. Randomly generate \(n \) individuals in \(Y \) to form initial population \(P_0 \)
2. for every \(p_i \) in \(P_0 \) do
 Evaluate \(p_i \) for all tasks in the multitasking environment
3. end for
4. Compute scalar fitness \(\phi_i \) for every \(p_i \)
5. Set \(t = 0 \)
6. while (stopping conditions are not satisfied) do
 \(C_t = \text{Offspring} (P_t) \to \text{Based on assortative mating} \)
 for every \(c_i \) in \(C_t \) do
 Assign skill factor \(\tau_i \) as per vertical cultural transmission
 Evaluate \(c_i \) for task \(\tau_i \) only
 end
 \(R_t = C_t \cup P_t \)
 Update scalar fitness of all individuals in \(R_t \)
 Select \(N \) fittest members from \(R_t \) to form \(P_{t+1} \)
 Set \(t = t + 1 \)
7. end while

IV. CONSTRUCTING THE FUNCTIONAL SYNERGY METRIC

In this paper, we aim to develop a deeper theoretical understanding of when and why the process of implicit genetic transfer (during multitasking) may lead to performance enhancements. Thus, of key interest is a formal description of the manner in which one task may complement another. To this end, based on a correlation analysis of the objective function landscapes, we propose a functional synergy metric...
(FSM) denoted as \(\zeta \) for capturing and quantifying a promising mode of complementarity between distinct optimization tasks.

Let us consider a 2-factorial problem for minimizing the objective functions \(F_1 : X_1 \rightarrow \mathbb{R} \) and \(F_2 : X_2 \rightarrow \mathbb{R} \). For ease of conceptualization, it is assumed in the subsequent steps that both tasks belong to the domain of continuous optimization and possess the same search space dimensionality. For cases where the dimensionality differs, the current chromosome decoding technique restricts genetic exchange to the first \(D_{\text{overlap}} \) dimensions, where \(D_{\text{overlap}} = \min \{D_1, D_2\} \).

During construction of the FSM, the gradients of the constitutive functions are expected to provide clues toward estimating the movement of individuals in a population. Recall that gradient information is incorporated in the MFEA during local search refinements of offspring via some gradient-based local optimizer. Accordingly, we denote the gradient of a function \(F \) in its original search space as \(\nabla_x F \), and its transformation to the unified search space as \(\nabla_y F \). The relation between \(\nabla_x F \) and \(\nabla_y F \) can then be stated as,

\[
\nabla_y f = J^T \nabla_x f,
\]

where \(J \) is the Jacobian matrix. For the adopted chromosome decoding procedure described in Section III-A, \(J \) takes the following form,

\[
J = \begin{bmatrix}
U_1 - L_1 & 0 & ... \\
0 & U_2 - L_2 & ... \\
& & & & \\
& & & & \\
& & & &
\end{bmatrix}.
\]

Definition 5: Functions \(F_1 \) and \(F_2 \) are said to be locally conflicting at some point \(y \in \mathbb{R} \) if at that point the inner product of their gradients, given by \(\nabla_y F_1 \cdot \nabla_y F_2 \), is negative.

Keeping Definition 5 in mind, we refer to Fig. 2, which depicts the two hypothetical functions in a unified one-dimensional search space. The global optimum of function \(F_1 \) is located at \(D \), while that of function \(F_2 \) is located at \(C \). Within the region \(CD \), the two functions are locally conflicting according to Definition 5 as an increase in \(F_2 \) is accompanied by a decrease in \(F_1 \) (and vice versa). Similarly, in the region \(AB \), the functions can once again be designated as being locally conflicting as an increase in \(F_1 \) is associated with a decrease in \(F_2 \). However, notice that although minimizing \(F_2 \) in \(AB \) pushes candidate solutions away from the local optimum of \(F_1 \) located at \(A \), it effectively pushes the solutions towards the global optimum of \(F_1 \) at \(D \). In other words, minimizing \(F_2 \) in \(AB \) can in fact be considered globally beneficial for \(F_1 \) despite the two functions being locally conflicting in that region. This observation is summarized by Definition 6, wherein we introduce the idea of positively complementing functions.

Definition 6: The function \(F_2 \) is said to be positively complementing \(F_1 \) at some point \(y \in \mathbb{R} \) if at that point \(-\nabla_y F_2 \cdot (y' _1 - y) > 0\), where \(y' _1 \in \mathbb{R} \) is the global optimum of \(F_1 \). Moreover, a local complementarity coefficient \(G_{21} \) of \(F_2 \) towards \(F_1 \) at \(y \) is defined as,

\[
G_{21}(y) = \frac{-\nabla_y F_2(\mathcal{y}'_1 - y)}{\|\nabla_y F_2\| |\mathcal{y}'_1 - y|},
\]

where \(\mathcal{y}'_1 \) is the Jacobian matrix. For the adopted chromosome decoding procedure described in Section III-A, \(J \) takes the following form,

\[
J = \begin{bmatrix}
U_1 - L_1 & 0 & ... \\
0 & U_2 - L_2 & ... \\
& & & & \\
& & & & \\
& & & &
\end{bmatrix}.
\]

Based on the aforementioned preliminaries, we first devise a means to determine whether one task is complementing another at a given point in the unified search space of a multitasking problem. In order to develop some intuition about the concept of complementarity, we begin by discussing the opposing notion of conflicting functions that frequently surfaces in the context of multi-objective optimization. Conventionally, a relationship in which the performance of one function deteriorates as the performance of another improves is described as being conflicting [14]. This leads to a formal definition of locally conflicting functions, as is summarized below.

Definition 5: Functions \(F_1 \) and \(F_2 \) are said to be locally conflicting at some point \(y \in \mathbb{R} \) if at that point the inner product of their gradients, given by \(\nabla_y F_1 \cdot \nabla_y F_2 \), is negative.

Conventionally, a relationship in which the performance of another improves is described as being conflicting [14]. This leads to a formal definition of locally conflicting functions, as is summarized below.

Definition 6: The function \(F_2 \) is said to be positively complementing \(F_1 \) at some point \(y \in \mathbb{R} \) if at that point \(-\nabla_y F_2 \cdot (y' _1 - y) > 0\), where \(y' _1 \in \mathbb{R} \) is the global optimum of \(F_1 \). Moreover, a local complementarity coefficient \(G_{21} \) of \(F_2 \) towards \(F_1 \) at \(y \) is defined as,
\[G_{11}(y) = \frac{-\nabla f_1(y_1^* - y)}{\nabla f_1(y_1^* - y)} \]

(5)

\[G_{11} \] is interpreted in exactly the same manner as the complementarity coefficient between distinct functions. Thus, \(G_{11} > 0 \) at some point \(y \) implies that performing local search for function \(F_1 \) at \(y \) drives candidate solutions towards the global optimum of the same function. On the other hand, \(G_{11} < 0 \) indicates that the local improvement step in fact causes candidate solutions to be pushed away from the global optimum of the function.

In order to evaluate the overall complementarity of \(F_2 \) towards \(F_1 \), we only consider the contribution of \(F_2 \) in those regions of the unified search space where the local landscape of \(F_1 \) is negatively self-complementing (as per Definition 7).

The union of these regions is denoted as \(Y_{F_1} \). The total volume \(\bar{V}_{F_1} \) of this possibly disjoint subspace \((\bar{V}_{F_1} \subseteq Y) \) is given by,

\[\bar{V}_{F_1} = \int \max\{0, \text{sign}(-G_{11})\} \cdot dV, \]

(6)

where \(dV \) is a differential volume element of the unified search space \(Y \). With this background, the cumulative complementarity of \(F_2 \) towards \(F_1 \) is represented by the FSM \((\xi_{21}) \) as,

\[\xi_{21} = \int \omega(y) \cdot d\bar{V}_{F_1} \],

(7)

where,

\[\omega(y) = \begin{cases}
1 & \text{if } G_{11}(y) \leq 0 \text{ and } G_{21}(y) > 0 \\
-1 & \text{if } G_{11}(y) \leq 0 \text{ and } G_{21}(y) < G_{11}(y) \\
0 & \text{otherwise}
\end{cases} \]

(8)

Note that although we exclusively address the case of \(F_2 \) complementing \(F_1 \), in this section, the same equations hold in the converse situation wherein the complementarity of \(F_1 \) toward \(F_2 \) is to be evaluated. The only adjustment necessary is the swapping of indices 1 and 2 in Eqs. (4) to (8).

A. Implications of the functional synergy metric

As is clear from Eq. (7), \(\xi_{21} \) must take a value between -1 and 1. In the extreme case, when \(\xi_{21} = 1 \), it is indicated that \(F_2 \) positively complements \(F_1 \) throughout \(Y \), and can therefore be expected to substantially accelerate the convergence process for \(F_1 \) in a multitasking environment.

As an illustration of this claim, consider a 2-factorial problem in which \(F_1 \) is a complex multimodal function with a unique global optimum, and \(F_2 \) is any convex function. Further, assume that the search space dimensionality of both functions match, and that their global optima intersect (or, are located in close proximity of one another) in the unified search space. Since \(F_2 \) is convex, we know \(-\nabla F_2 \cdot (y_2 - y) > 0 \) everywhere in \(Y \). Combining this fact with the assumption that \(y_1^* \approx y_2^* \), it follows that \(-\nabla F_2 \cdot (y_1^* - y) \) must also be positive everywhere in \(Y \). Therefore, according to Eqs. (7) and (8), in such scenarios \(\xi_{21} \rightarrow 1 \) regardless of the complexity of \(F_1 \). Now, we imagine solving the aforementioned problem with the MFEA. Notice that since \(F_2 \) is convex, it will get optimized comparatively quickly as a result of the local optimization step. Thereafter, the refined genes will get efficiently transferred across for \(F_1 \) by the process of implicit genetic transfer. In other words, both functions are likely to be optimized within a short span of time.

While examples with \(\xi_{21} > 0 \) are expected to showcase a majority of positive (i.e., beneficial) genetic transfers, cases with \(\xi_{21} < 0 \) are expected to experience much unwanted negative transfer [15]-[17] during multitasking. However, the nice property of evolution is that when the latter occurs, the negatively transferred genes get automatically eliminated from the population (over the course of a few generations) by the process of natural selection or survival of the fittest.

V. COMPUTATIONAL EXPERIMENTS

Having devised the FSM, we carry out an empirical study of the alignment between its numerical value and the observed performance of the MFEA. Before proceeding further, notice that the synergy measure is based purely on the correlation between objective function landscapes, and is largely independent of the mechanisms of the multitasking engine. Thus, it is recognized that the correspondence we are seeking can only be of a “qualitative” nature as the metric is only implicitly related to the expected performance of the MFEA (which is simply viewed as a candidate “gradient-based local learning endowed” evolutionary multitasking engine). In fact, how well the MFEA actually exploits underlying synergies is entirely subject to the collective efficacy of its mechanisms. As of now, a higher value of synergy simply highlights the possibility of improved convergence due to increased positive genetic transfer, while a drop in value suggests inferior convergence from predominantly negative transfer. Nevertheless, the metric serves as the means to understand when and why evolutionary multitasking may lead to potential performance improvements.

The computational experiments in this section have been designed to reveal the implications of the FSM. To begin, we consider the following set of benchmark functions that have been commonly in use in the literature:

a) Sphere function,

\[\sum_{i=1}^{D} z_i^2; z = (x - O_S). \]

(9)

b) Ackley function [18],

\[20 + e - 20 \exp \left(-0.2 \sqrt{\sum_{i=1}^{D} z_i^2}\right) - \exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos(2\pi z_i)\right); z = (x - O_A). \]

(10)

c) Rastrigin function [19],

\[\sum_{i=1}^{D} (z_i^2 - 10 \cos(2\pi z_i) + 10); z = (x - O_R). \]

(11)

d) Weierstrass function [20],

\[\sum_{i=1}^{D} \left[0.5^k \cos(2\pi 3^k (z_i + 0.5))\right] - D \sum_{k=0}^{20} \left[0.5^k \cos(\pi 3^k)\right]; z = (x - O_W). \]

(12)

In Eqs. (9) – (12), \(O_S, O_A, O_R, \) and \(O_W \) represent the (adjustable) locations of the global optimums of the sphere,
Ackley, Rastrigin, and Weierstrass functions, respectively. By adjusting these locations, one can create new multitasking instances with varying levels of inter-task synergy.

In the computational experiments that follow, we shall consider 2-factorial problems. The extent and dimensionality of the search space for each function is reported in Table I. With regard to the MFEA, standard genetic operators, namely, Simulated Binary Crossover (SBX) [21] and Gaussian mutation [22], are consistently used throughout. With the SBX operator, no additional uniform crossover-like variable swap is performed so as to emphasize on the preservation of genetic linkage/building-blocks at the cost of reduced exploration [8]. Although such swapping has proven useful for many instances with additively separable functions, it becomes much harder to decipher the true effects of multitasking. Furthermore, a small population of $n = 30$ individuals is evolved for a period of 100 generations prior to termination of the algorithm. Recall that the MFEA incorporates individual learning into each task generations prior to termination of the algorithm. Recall that understanding of the observed performance of the MFEA.

Approximation of the metric provides a good “qualitative” differentiation everywhere.

Note that although an infinite series form of the Weierstrass function are generated in the 2-D space and standard rectangular quadrature is employed for numerical integration. Also, with regard to the (numerical) computation of function gradients, mutation [22], are consistently used throughout. With the SBX operator, no additional uniform crossover-like variable swap is performed so as to emphasize on the preservation of genetic linkage/building-blocks at the cost of reduced exploration [8]. Although such swapping has proven useful for many instances with additively separable functions, it becomes much harder to decipher the true effects of multitasking. Further, a small population of $n = 30$ individuals is evolved for a period of 100 generations prior to termination of the algorithm. Recall that the MFEA incorporates individual learning into each task evaluation call. Every individual is thus improved by a local search move. Local improvements are identified via the BFGS quasi-Newton method (which is executed for a maximum of 5 iterations per individual) and the changes are incorporated into the chromosome in the spirit of Lamarckian learning [23].

All convergence trends obtained by the MFEA are presented alongside standard single-objective optimization (SOO). The corresponding EA for SOO employs the same population size and identical local search (BFGS), crossover (SBX), and mutation (Gaussian) operations as the MFEA, with the probability of an individual to mutate fixed at 10%.

Table I

<table>
<thead>
<tr>
<th>Functions</th>
<th>Dimensionality</th>
<th>Search Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>30</td>
<td>[-100, 100]</td>
<td>Unimodal</td>
</tr>
<tr>
<td>Ackley</td>
<td>30</td>
<td>[-32, 32]</td>
<td>Multimodal</td>
</tr>
<tr>
<td>Rastrigin</td>
<td>20</td>
<td>[-5, 5]</td>
<td>Multimodal</td>
</tr>
<tr>
<td>Weierstrass</td>
<td>20</td>
<td>[-0.5, 0.5]</td>
<td>Multimodal</td>
</tr>
</tbody>
</table>

A. Numerical approximation of the functional synergy metric

In order to rapidly compute the implication of the FSM, the integrals in Eqs. (6) & (7) are numerically approximated over a restricted two dimensional search space. The suppression of the remaining dimensions is considered viable as the test functions are separable. 10,000 uniformly distributed points are generated in the 2-D space and standard rectangular quadrature is employed for numerical integration. Also, with regard to the (numerical) computation of function gradients, note that although an infinite series form of the Weierstrass function is non-differentiable, the partial sum in Eq. (12) is differentiable everywhere.

In the subsection that follows, we show that the numerical approximation of the metric provides a good “qualitative” understanding of the observed performance of the MFEA. For related analyses the reader is also referred to [24], [25].

B. Empirical revelations of the functional synergy metric

We construct three 2-factorial test examples by selecting from the list of benchmark functions provided in Table I. Each example consists of three multitasking instances which are formed by combining functions and/or adjusting the locations of their global optimum.

1) Example 1 (Ackley with sphere function)

In the first example, we combine the Ackley function and the sphere function into a single multitasking environment. Here, Ackley serves as a base function with its optimum fixed at $O_A = [0, 0, \ldots, 0]$. On the other hand, three variants of the sphere function are considered. In the first case, the global optimum of the sphere function intersects with that of the Ackley function. We denote the resultant multitasking instance as $(A, S)_{ZS}$, where ZS stands for zero separation. In the second case, the optimum of the sphere function is shifted to $O_S = [10, 10, \ldots, 10]$ and the resultant instance is denoted as $(A, S)_{MS}$ (here MS stands for medium separation). Finally, in the third case, the optimum of the sphere function is adjusted to $O_S = [50, 50, \ldots, 50]$ and the resultant instance is denoted as $(A, S)_{LS}$ (here LS stands for large separation). A 1-D visualization of the shifted function is depicted in Fig. 3.

Table II summarizes the three multitasking instances and reports the numerical values of the FSM. For instance $(A, S)_{ZS}$ with intersecting optima, ξ_{SA} equates to 1 indicating that the overlapping sphere function positively complements the Ackley function everywhere in Y_A. In fact, this result follows directly from the discussion in Section IV-A as the sphere function is convex. On the other hand, for the instances with increasing optima separation, the results in Table II show a continuous drop in the value of the FSM. The experimental manifestation of the loss in synergy is displayed in Fig. 4.

Table II

<table>
<thead>
<tr>
<th>Instance</th>
<th>FSM Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(A, S)_{ZS}$</td>
<td>0.9978</td>
</tr>
<tr>
<td>$(A, S)_{MS}$</td>
<td>0.8734</td>
</tr>
<tr>
<td>$(A, S)_{LS}$</td>
<td>0.784</td>
</tr>
</tbody>
</table>

ξ_{SA} = Complementarity of the sphere function toward Ackley.
Fig. 4 presents averaged convergence trends of the Ackley function for instances (A, S)\textsubscript{ZS}, (A, S)\textsubscript{MS} and (A, S)\textsubscript{LS}. The correspondence between the numerical value of the FSM and the observed performance of the MFEA is revealed in this figure. As was expected, in instance (A, S)\textsubscript{ZS}, the Ackley function gets optimized rapidly as it is positively complemented by the sphere function throughout the space \mathbb{V}_F. Moreover, the results in Table II indicate $\xi_{SA}^{MS} > \xi_{SA}^{LS}$, which substantiates the observation that the convergence rate of (A, S)\textsubscript{MS} is significantly faster than that of (A, S)\textsubscript{LS}.

Table III summarizes the three instances in example 2 and reports the numerical values of the FSM. Convergence trends for the same are depicted in Fig. 5. As can be seen therein, the qualitative implications of the result $\xi_{BW}^{ZS} > \xi_{BW}^{MS} > \xi_{BW}^{LS}$ (in Table III) are borne out by the computational experiments. As is predicted by the synergy values, the instance (W, R)\textsubscript{ZS} is found to be most benefited from the availability of positively transferrable genetic material. Furthermore, the subsequent loss in inter-task synergy successfully explains the decelerating convergence rate of the instances with increasing optima separation.

2) Example 2 (Weierstrass with Rastrigin function)

The second 2-factorial example comprises the Weierstrass function (as the base function) and the Rastrigin function. In these instances, the global optimum of the Weierstrass function is kept fixed at $O_W = [0, 0, \ldots, 0]$ while the Rastrigin function occurs in the following three variants: (a) (W, R)\textsubscript{ZS} with $O_R = [0, 0, \ldots, 0]$, (b) (W, R)\textsubscript{MS} with $O_R = [1, 1, \ldots, 1]$, and finally (c) (W, R)\textsubscript{LS} with $O_R = [2, 2, \ldots, 2]$.

Table III

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O_W</td>
<td>(W, R)\textsubscript{ZS}</td>
<td>(W, R)\textsubscript{MS}</td>
</tr>
<tr>
<td>O_R</td>
<td>[0, 0, \ldots, 0]</td>
<td>[0, 0, \ldots, 0]</td>
</tr>
<tr>
<td>ξ_{BW}</td>
<td>0.3122</td>
<td>0.3057</td>
</tr>
</tbody>
</table>

ξ_{BW} = Complementarity of the Rastrigin function toward Weierstrass.

3) Example 3

In the final example, the Rastrigin function is viewed as a base function with global optimum fixed at $O_R = [0, 0, \ldots, 0]$. It is combined in turn with the sphere, Ackley, and Weierstrass functions. In the first instance, denoted as (R, S)\textsubscript{MS}, the global optimum of the sphere function is shifted to $[10, 10, \ldots, 10]$. The second and third instances, labeled as (R, A)\textsubscript{ZS} and (R, W)\textsubscript{ZS}, comprise the Ackley and Weierstrass functions, respectively, with their global optimums intersecting with the Rastrigin function at $[0, 0, \ldots, 0]$. The FSM values for all three instances are listed in Table IV in decreasing order of inter-task synergy. It is interesting to note that the synergy value turns out to be maximum for the sphere function (by a significant margin) despite the fact that its optimum is substantially separated from that of the Rastrigin function.
With regard to the averaged convergence trends depicted in Fig. 6, the numerical values of the FSM once again prove to be a good indicator of the eventual performance of the MFEA. In particular, the correspondence between the result $\xi_{SR} > \xi_{WR}$ ξ_{AR} (in Table IV) and the outcome of the MFEA are verified by the observed convergence trends.

Table IV

Example 3: FSM Values.

<table>
<thead>
<tr>
<th>ξ_{SR}</th>
<th>ξ_{WR}</th>
<th>ξ_{AR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9995</td>
<td>0.4868</td>
<td>0.2927</td>
</tr>
</tbody>
</table>

$(\xi_{SR}, \xi_{WR}, \xi_{AR})$ = Complementarity of the (sphere, Weierstrass, Ackley) functions toward Rastrigin.

VI. Conclusions

In this paper, we have described the concept of evolutionary multitasking as a novel means to fully unlocking the power of implicit parallelism of population-based search. In order to better understand the cause of inter-task complementarity in multitasking environments, we have conceptualized a functional synergy metric (FSM) denoted as ξ that analyzes the correlation between objective function landscapes of distinct tasks. As is substantiated by various computational experiments, the metric explains (at least in a qualitative sense) when and why the notion of implicit genetic transfer in evolutionary multitasking may allow for accelerated convergence of complex optimization tasks.

In conclusion, the present work provides an interesting perspective towards the numerical representation of the underlying complementarity between tasks, that which potentially gets harnessed by the process of implicit genetic transfer during evolutionary multitasking. It is hoped that armed with this understanding, researchers will be in a better position to design multitasking engines of the future that are capable of exploiting synergies to the fullest.

Acknowledgement

This work was conducted in the Rolls-Royce@NTU Corporate Lab with support from the National Research Foundation (NRF) Singapore under the Corp Lab@University Scheme.

References

